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Abstract 

Arrhythmia disease can be extremely damaging to the 

heart, and in severe cases can even lead to death. The ECG 

smart monitoring device is an effective way for detecting 

arrhythmia disease, and as wearable devices spreads, it 

also places certain requirement on lightweight arrhythmia 

detection algorithms. It is of great importance to 

implement an efficient arrhythmia detection algorithm 

with strong generalization performance. This work trains 

an arrhythmia detection model on the Georgia 12-lead 

ECG Challenge (G12EC) database and the China 

Physiological Signaling Challenge 2018 (CPSC2018) 

database using xResNet18 as the backbone network and 

momentum contrast learning as the framework, which 

allows contrast learning of positive samples and a large 

number of negative samples by introducing queue and 

momentum update encoder parameters to obtain a more 

comprehensive information representation. The model was 

pre-trained using the Georgia 12-lead ECG Challenge 

(G12EC) Database to obtain better characterization of 

initialization information and fine-tuned using the China 

Physiological Signal Challenge 2018 (CPSC2018) dataset. 

The experimental results showed that the model was 

effective with an AUC of 0.861, an Acc of 77.04% on the 

CPSC2018 database. 

 

 

1. Introduction 

In recent years, with the development of society, 

arrhythmia diseases have become more and more widely 

concerned. The number of deaths due to arrhythmia 

disease is increasing every year, making it critical to 

monitor, screen, and diagnose cardiovascular disease in 

real time through wearable ECG devices so that patients 

can detect the condition and receive treatment earlier. At 

this stage, arrhythmia recognition is mainly diagnosed by 

forming 12-lead ECGs from the body surface potential 

difference collected by 12-lead electrode wires placed at 

different locations on the body. Many methods for 

automatic arrhythmia diagnosis using DNNs already exist, 

which has led to considerable development of deep 

learning in the field of ECG [1-3]. 

With the development of Natural Language Processing 

(NLP) and Computer Vision (CV), the data feature mining 

capabilities and information characterisation capabilities 

of Deep Neural Networks (DNNs) have been further 

developed. Deep neural network models have been made 

more powerful in terms of data encoding and feature 

extraction by designing deeper network structures and 

using large training data sets [4]. However, the large 

amount of labelled data will consume huge amounts of 

manual labelling costs, making the training of models 

difficult. 

Past years, self-supervision has received much attention 

in Deep Neural Network. Self-supervised learning aims to 

mine unlabelled data for its own representational 

properties by designing auxiliary tasks that can be used as 

supervised information [5-7]. It generates supervised 

information from proxy tasks to pre-train large-scale 

unlabelled data, obtains a representational encoding of the 

data itself, and uses the pre-trained model for downstream 

tasks. Effectively, only a small number of labelled samples 

are needed for supervised training in the downstream task 

to achieve the performance of a strongly supervised 

training model. It is worth mentioning that contrast 

learning, as a type of self-supervised learning, has 

excellent performance in optimizing encoder feature 

extraction performance. It generates different views of the 

same data by means of data augmentation. Multiple views 

of the same data are considered as positive classes among 

themselves and negative classes among different data. 

Contrast learning maximizes the similarity between 

negative classes and minimizes the similarity between 

positive classes for the purpose of enhancing encoder 

representation. The representative methods in contrast 

learning are SimCSE [8], SimCLR [9], CMC [10], CPC 

[11], BYOL [12] and momentum contrast (MoCo) [13]. 

MoCo transforms the contrast similarity problem into a 

query and key query problem, and proposes the use of 

queue to store key values combined with momentum to 

update the encoder, which solves the problem of large 

amount of data required for contrast learning that is 

difficult to train, and fills the gap between unsupervised 

learning and supervised learning. For 12-lead ECG, the 

cost of manually annotating ECG data is much higher than 
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for other types of data. It requires more specialized medical 

knowledge to support, and some types of arrhythmia 

disease data are very scarce, which is too expensive for 

high-volume labelling of ECG data. Therefore, the use of 

self-supervised learning methods to pre-train large-scale 

unlabelled ECGs and then fine-tune them using small 

batches of labelled data in downstream tasks to achieve 

automatic diagnosis of arrhythmia diseases is highly 

preferred. 

In this paper, a novel self-supervised model for 12-lead 

ECG arrhythmia classification is proposed. The model is 

pre-trained with MoCo-based contrast learning for 12-lead 

ECG, and the pre-trained model is applied to the 

downstream task representation. Specifically, the main 

contributions of this paper are as follows: (1) During data 

enhancement, Gaussian noise was randomly added to the 

12-lead ECG, and good characterization was achieved in 

contrast learning, (2) The lightweight model xResNet18 

which is less computationally was used as an encoder for 

MoCo. The pre-trained xResNet18 have a good 

performance in downstream tasks, (3) A suitable Gaussian 

noise intensity for the data enhancement process was found. 

 

2. Methods 

2.1. Database 

All the databases used in the paper, including the 

Georgia 12-lead ECG Challenge (G12EC) Database and 

China Physiological Signal Challenge 2018 (CPSC2018) 

database. The Georgia 12-lead ECG Challenge (G12EC) 

Database contains 10344 12-lead ECGs with a length 

between 5 and 10 seconds and a sampling frequency of 500 

Hz. The CPSC2018 database contains 6877 12-lead ECG 

arrhythmia records from 11 hospitals with a balanced 

male-to-female ratio. The duration of each record is 

between several seconds and tens of seconds, and the 

sampling rate is 500Hz. The types of records are: Normal, 

Atrial fibrillation (AF), First-degree atriocentric block (I-

AVB), Left bundle branch block (LBBB), Right bundle 

branch block (RBBB), Premature atrial contract (PAC), 

Premature ventricular contraction (PVC), ST-segment 

depression (STD) and ST-segment elevated (STE). We use 

the Georgia 12-lead ECG Challenge (G12EC) Database as 

a pre-trained dataset and the CPSC2018 database as a 

dataset to test the performance of the model for 

downstream tasks. For each database, sliding windows of 

10s with a 5s overlap is used to intercept the data segment. 

The pre-trained database is a self-supervised process, so its 

data label is not required. The label of the arrhythmia data 

segment from CPSC2018 database is consistent with the 

label of the record it originally belonged to. Further details 

regarding the data are provided in Table 1. 

 

 

Table 1. The details of the database. 

G12EC 
Class Train size Test size Total 

- 8233 2059 10292 

CPSC2018 

Class Train size Test size Total 

Normal 1335 373 1708 

AF 1585 385 1970 

I-AVB 909 236 1145 

LBBB 299 64 363 

RBBB 2329 524 2853 

PAC 1201 276 1477 

PVC 1491 391 1882 

STD 1132 312 1444 

STE 347 96 443 

 

2.2. Preprocessing 

To better validate the performance of the model, all 

ECG records were filtered using a bandpass filter with 

passband frequencies from 0.5 to 45 Hz, and the filtered 

signals were normalized to have a mean of 0 and a variance 

of 1. 

 

2.3. xResNet18 

The basic architecture of the xResNet18 model [14] is 

shown in Figure 1. The model consists of Input stem, 

output and 4 stage modules. The Input stem module 

consists of three convolutional layers, each followed by a 

BN layer and a ReLu activation layer. For the 4 stage 

modules, each stage consists of 1 Down sampling and 2 

Residual blocks. 

In this paper, we use the model as a feature extractor for 

MoCo contrast representation learning and use the pre-

trained model parameters for downstream tasks.  

 
Figure 1. Basic architecture of the adopted xResNet18 

model. 

 

2.4. Contrastive Learning Framework 

In this paper, we used the MoCo contrast learning 

representation framework with queue and momentum 

update parameters at its core to enhance the explanatory 

power of the model in the pre-training phase. The 

framework introduces queues in the process of learning 

representations so that the comparison representations 

contain more negative samples and ensure stronger 
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generalization performance of the model. At the same time, 

the framework updates the parameters of the encoder in a 

momentum update manner, so that the negative sample 

representations in the queue are more consistent with the 

features of the positive samples. The specific pre-training-

fine-tuning process is shown in Figure 2. The framework 

consists of Data Augmentation, Encoder, Momentum 

Encoder, MLP layer and queue, where the Momentum 

Encoder is momentum updated as the parameters of the 

Encoder change, which is calculated as shown as follows: 

𝜃𝑚 ← 𝑚𝜃𝑚 + (1 − 𝑚)𝜃𝑘 

where, 𝜃𝑚 is the parameter of the Momentum Encoder, 𝜃𝑘 

is the parameter of the Encoder, 𝑚  is the momentum 

update parameter and is set to 0.999. 

In the pre-training phase, we initialized a queue to store 

negative samples according to the FIFO principle based on 

the MoCo setup, and the length of the queue was set to 

6400, which is a subset of the training set. For an ECG 

recording of 10s in length, each second data segment was 

treated as a computational unit. We add Gaussian noise 

segments randomly in units of computational units on 

different leads of the same 12-lead ECG 𝑥𝑖  for data 

enhancement to obtain positive sample pairs 𝑥𝑖
′, where the 

percentage of noise addition was 80% for each lead. The 

formula for Gaussian noise is shown as follows: 

𝐺(𝑥) =
1

√2𝜋𝜎
𝑒

−
(𝑥−𝜇)2

2𝜎2  

where, 𝜇 and 𝜎 are the mean and variance of the generated 

Gaussian noise and are set to 0 and 0.1, respectively. 

The original data 𝑥𝑖 and the augmented data 𝑥𝑖
′ are used 

as inputs to the Encoder and the Momentum Encoder, 

respectively, to obtain the characterization features 𝐻 and 

𝐻′. 𝐻 and 𝐻′ are then further enhanced by the MLP layer 

for contrast learning interpretation, as described in the 

literature[9]. 

The essence of contrast learning is to improve the 

feature extraction ability of the model by increasing the 

representational similarity between positive samples 

(𝐺 and 𝐺′) and decreasing the representational similarity 

with negative samples (𝐺 and queue). Therefore, InfoNCE 

was chosen as the loss function to calculate the similarity 

between positive and negative samples. The loss function 

is calculated as follows: 

𝐿𝑞 = −𝑙𝑜𝑔
𝑒𝑥𝑝((𝑞 ∙ 𝑘+) 𝜏⁄ )

∑ 𝑒𝑥𝑝((𝑞 ∙ 𝑘𝑖) 𝜏⁄ )𝐾
𝑖=0

 

where, 𝑞 and 𝑘+ are the representations of positive sample 

pairs in the mini-batch, and 𝑘𝑖  is the representation of 

negative samples in the queue. 𝜏 denotes the temperature 

parameter, which is set to 0.07 in this paper. K denotes the 

size of the queue. 

After completing the forward computation of a mini-

batch, the Momentum Encoder is updated with the Encoder 

parameters, 𝐺′ is sent to the queue, and the earliest data 

entering the queue is sent out. 

In the downstream task, the pre-trained encoder 

parameters are used directly and the classifier head is 

connected for arrhythmia disease classification. During 

both pre-training and downstream fine-tuning training, the 

Adadelta optimizer was used and the learning rate was set 

to 0.005 and 0.001 for 100 and 200 training epochs with 

batch size of 16 and 32, respectively. 

 
Figure 2. MoCo Comparative Learning Framework. 

 

2.5. Evaluation methods 

For classification results, Sensitivity (𝑆𝑒), Specificity 

( 𝑆𝑝 ), Accuracy ( 𝐴𝑐𝑐 ), and 𝐴𝑈𝐶 -score are used as 

evaluation indicators. According to the positive or negative 

of the label, two indexes were used: true positive (𝑇𝑃), true 

negative (𝑇𝑁), false positive (𝐹𝑃), and false negative (𝐹𝑁). 

Where, 

𝐴𝑐𝑐 = (𝑇𝑃 + 𝑇𝑁) (𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃).⁄  

The 𝐴𝑈𝐶 -score refers to the area enclosed with the 

coordinate axis under the ROC curve. The curve is plotted 

according to a series of different cut-off values, with 𝑆𝑒 as 

the vertical coordinate and 𝑆𝑝 as the horizontal coordinate. 

The higher the 𝐴𝑈𝐶-score, the better the classifier effect. 

 

3. Results 

We added different intensities of noise intensity during 

the contrast learning pre-training, with 𝜎 being set to [0.1, 

0.2, 0.3, 0.4, 0.6, 0.8], all with a noise addition ratio of 80%, 

and after the same number of training epochs. The 

downstream task performance of the model under different 

Gaussian noise intensities is shown win Figure 3. As seen 

in the figure, the 𝐴𝑈𝐶 is maximum at 𝜎 0.1, which is 0.861. 

More detailed performance metrics for the model at 

different 𝜎 values are shown in Table 2. When the 𝜎 was 

0.1, the model achieved an 𝐴𝑐𝑐  of 77.04% in the 

CPSC2018 arrhythmia database. 
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Figure 3. Comparison of macro AUC-ROC score at 

different Gaussian noise intensities after training 200 

epochs.  

 

Table 2. The details of performance metrics for the 

model. 

𝜎 𝐴𝑐𝑐(%) 𝐴𝑈𝐶 

0.1 77.04 0.861 

0.2 76.28 0.857 

0.3 76.13 0.855 

0.4 76.40 0.854 

0.6 76.43 0.851 

0.8 74.82 0.845 

 

4. Discussion 

As shown in Figure 3 and Table 2, different intensities 

of noise had different degrees of influence on the 

performance of the model, and the highest 𝐴𝑐𝑐 and 𝐴𝑈𝐶 

were 77.04% and 0.861 when the variance of Gaussian 

noise was 0.1. In summary, the method is an effective 

lightweight arrhythmia detection algorithm, and the model 

is more amenable to deployment to wearable devices than 

complex models. 
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